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Abstract
A method of generating some quantum mechanical exactly solvable potentials
(ESPs), using the properties of classical orthogonal polynomials (COPs), is
presented. It is illustrated using hypergeometric polynomial. Utilization of
other COPs to get more ESPs is indicated.

PACS numbers: 02.90.+p, 03.65.Db, 03.65.Ge

1. Introduction

The potential governing a quantum system (QS) very often does not yield an exact solution of
the Schrödinger equation. Therefore, one has to depend on various approximation schemes
such as perturbation theory, variational technique, WKB method, etc. However, the success
of the application of these approximation schemes in getting the information for a given
QS largely depends on the ‘nearness’ of the potential to some exactly solvable potentials
(ESPs). This motivates us to find more and more ESPs which will facilitate practical
quantum mechanical calculations. Besides, non-perturbative solutions of different potentials
may lead to new physical ideas in quantum physics. This prompted one of the present
authors to device a transformation method (Ahmed et al 2001) in which one has to start
from a known analytically solved QS and transform it to generate new QS(s). Many authors
also contributed valuable works in this direction (Manning 1935, Biswas et al 1971, Khare
1981, Roy and Roychoudhury 1987, Chhajlany and Malnev 1990, Bose 1994) including the
works (Nieto 1984) inspired by supersymmetric (SUSY) quantum mechanics (Cooper et al
1995). Besides the normal exactly solvable QSs other analytically solvable QSs include the
quasi-exactly solvable QS (Flessas 1979, Flessas and Das 1980, Dutra 1988, Shiffman 1989,
Dutra and Filho 1991), conditionally exactly solvable QS (Dutra 1993, Dutta et al 1995a)
and conditionally quasi-exactly solvable QS (Dutta 1995b). A preliminary version of the
present work to generate ESP based on the properties of classical orthogonal polynomials
(COPs) in any desired dimensional space has already been published (Ahmed and Borah
2002, henceforth referred to as I).
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In this paper, we present a method to construct an exactly solvable quantum system
(EQS), which is a refined and expanded version of our earlier report (I). We consider a difactor
wavefunction ψ(r) = F(G(r))Qm

n (G(r)), each factor of which is assumed to be a function of
another smooth continuous function G(r) which is at least thrice differentiable. The technique
is to establish a D-dimensional radial Schrödinger equation for the difactor wavefunction
ψ(r). The expression for the differential part ψ ′′/ψ + (D − 1)r−1ψ ′/ψ ≡ �(r), say, of the
Schrödinger equation �(r) + (En − V (r)) = 0 is calculated taking Qm

n (r) to be one of the
known COPs in the difactor wavefunction ψ(r). The analytic form of �(r) is then reducible
to a multiterm expression containing G(r) and its higher order derivatives using the specific
differential equation of the COP considered. �(r) is then cast in the form (V (r) − E) to get
the standard form of radial stationary state Schrödinger equation in D-dimensions by selecting
one of the terms of �(r) and putting it constant. This last step, which is one of the main
ingredients of the method, can be generalized as discussed in the formalism. The constant
eventually becomes the energy eigenvalues En. The above mentioned step, besides providing
En, also gives a differential equation in G(r) which yields the functional form of G(r). This
in turn allows us to write �(r) in the form V (r) − En from which the ESP V (r) can be
read off. This enables us to obtain an EQS having a specific potential, energy eigenvalues
and normalizable eigenfunctions. The normalizability of the wavefunction gives constraints
on the n,m values of the COP, Qm

n (G(r)) and proper choices of these values in conformity
with the constraints make the eigenfunction normalizable. However, it should be noted that,
the procedure elucidated above gives EQSs which are mostly Sturmian EQSs in nature. By
applying system specific conversion techniques as given in the illustrative examples some
of them can be converted to normal EQSs, equipped with an ‘n-independent’ potential and
normalizable energy eigenfunctions.

2. Formalism

We consider a difactor radial wavefunction ψ(r) given by

ψ(r) = F(G(r))Qm
n (G(r)) (1)

each factor of which is assumed to be a function of another smooth continuous function G(r)

at least thrice differentiable. Qm
n (r) is generic function and will be identified as one of the

COPs. The radial Schrödinger equation in D-dimensional Euclidean space is established for
the wavefunction ψ(r) and is

ψ ′′(r)
ψ(r)

+
D − 1

r

ψ ′(r)
ψ(r)

= G′2(r)
F ′′(G)

F (G)
+

{
G′′(r) +

D − 1

r
G′(r)

}
F ′(G)

F (G)

+ G′2(r)
Qm′′

n (G)

Qm
n (G)

+

{
G′′ +

D − 1

r
G′ + 2G′2 F ′(G)

F (G)

}
Qm′

n (G)

Qm
n (G)

= G′2(r)
F ′′(G)

F (G)
+

{
G′′(r) +

D − 1

r
G′(r)

}
F ′(G)

F (G)

+ G′2(r)
(

Qm′′
n (G)

Qm
n (G)

+

(
G′′

G′2 +
D − 1

rG′ + 2
F ′(G)

F (G)

)
Qm′

n (G)

Qm
n (G)

)
(2)

where a prime denotes differentiation with respect to its argument. We segregate the Qm
n (G)-

dependent part of equation (2) and term it Jn,m. The form of equation (2) then becomes

ψ ′′(r)
ψ(r)

+
D − 1

r

ψ ′(r)
ψ(r)

= G′2(r)
F ′′(G)

F (G)
+

(
G′′(r) +

D − 1

r
G′(r)

)
F ′(G)

F (G)
+ G′2(r)Jn,m (3)
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where

Jn,m = Qm′′
n (G)

Qm
n (G)

+

(
G′′

G′2 +
D − 1

rG′ + 2
F ′(G)

F (G)

)
Qm′

n (G)

Qm
n (G)

= Qm′′
n (G)

Qm
n (G)

+

(
d

dG
ln

rD−1(G)F 2(G)

r ′(G)

)
Qm′

n (G)

Qm
n (G)

. (4)

The general form of the differential equation of COPs in the independent variable G can
be written in the form

Q′′(G)

Q(G)
+ M(G)

Q′(G)

Q(G)
+ Jn,m = 0. (5)

Consistency then demands that
(

d
dG

ln rD−1(G)F 2(G)

r ′(G)

)
in equation (4) must be identified as the

M(G) of equation (5). This fixes the form of F(G) for a given COP as

F(G) = NG′− 1
2 r− D−1

2

(
exp

(∫
M(G) dG

)) 1
2

(6)

where N is the integration constant and plays the role of normalization constant of the energy
eigenfunctions.

Equation (6) gives

F ′(G)

F (G)
= −D − 1

2rG′ +
1

2
M(G) − 1

2

G′′

G′2 (7)

and

F ′′(G)

F (G)
= (D − 1)2

2r2G′2 − G′′′

2G′3 +
5

4

G′′2

G′4 +
(D − 1)G′′

rG′3 +
1

4
(M(G)))2

− (D − 1)

2rG′ M(G) +
1

2
M ′(G) − 1

2

G′′

G′2 M(G). (8)

Equations (3), (7) and (8) yield

ψ ′′(r)
ψ(r)

+
D − 1

r

ψ ′(r)
ψ(r)

= −1

2
{G, r} +

G′2

4
[M2(G) + 2M ′(G) + 4Jn,m] − (D − 1)(D − 3)

4r2

(9)

where the Schwartzian derivative symbol (Hille 1969),

{G, r} = G′′′(r)
G′(r)

− 3

2

G′′2(r)
G′2(r)

.

It is noteworthy that the potential given by expression (8) has a term (D−1)(D−3)

r2 which is
a constant background attractive inverse square potential in any arbitrary dimension except
dimensions 1 and 3, when the generated potential is pure non-power law. We may mention
that for the power-law cases, this background potential along with the potential coming from
the Schwartzian derivative conspire to give the correct centrifugal barrier potential in arbitrary
dimensions (Ahmed 1997).

Equation (9) is the master equation and the subsequent findings of this formalism are
based on it. The right-hand side (rhs) of equation (9) is actually a function B(G,G′,G′′,G′′′)
and is given by

B(G,G′,G′′,G′′′) = −1

2
{G, r} − (D − 1)(D − 3)

4r2
+

G′2

4
[M2(G) + 2M ′(G) + 4Jn,m]. (10)
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Table 1. Orthogonal polynomials and their characteristic quantities.

SN Qm
n (G) S(G) W(G) M(G) Jn,m

1 P
(α,β)
n (G) 1 − G2 (1 − G)α(1 + G)β

β−α−(α+β+2)G

1−G2 − n(n+α+β+1)

1−G2

2 Pn(G) 1 − G2 1 −2G

1−G2 − n(n+1)

1−G2

3 2F1(α, β, γ ;G) G(1 − G) Gα(1 − G)β
γ−(α+β+1)G

G(1−G)
αβ

G(1−G)

4 Lα
n(G) G Gα e−G α+1−G

G
− n

G

5 P m
n (G) 1 − G2 1 −2G

1−G2
n(n+1)

1−G2 − m2

(1−G2)2

6 C
(α)
n (G) G2 − 1 (−1)α− 1

2 (1 − G2)α− 1
2 −(2α+1)G

1−G2 − n(n+2α)

1−G2

7 Tn(G) 1 − G2 (1 − G2)−
1
2 −G

1−G2 − n2

1−G2

8 Hn(G) 1 e−G2 −2G −2n

M(G) and Jn,m are specified through the differential equation satisfied by the COP Qm
n (G): Qm′′

n (G)

Qm
n (G)

+ M(G)
Qm′

n (G)

Qm
n (G)

+

Jn,m = 0,M(G) = d
dG

ln S(G)W(G).

Expression (9) can be cast in the standard Schrödinger equation form if B(G,G′,G′′,G′′′)
can be written in the form

B(G,G′,G′′,G′′′) = En − V (r) (11)

(say). When V (r) is independent of quantum number n, the Schrödinger equation so obtained
would be normal/physical, otherwise it will be Sturmian.

Once a particular COP is chosen to generate an exact analytic solution (EAS), the
characteristic functions of the polynomial M(G), Jn,m along with the function G(r) get
specified. However, at this stage, B(G,G′,G′′,G′′′) will not be reduced to the form given
by equation (11). To get the energy term in (11) we have to choose one or more than one
term(s) in B(G,G′,G′′,G′′′) and put it equal to a constant which eventually can be identified
with the energy eigenvalues, En. If B(G) has k terms, then in practice, we can choose the
constant in p numbers of ways, where p � (2k − 2). This procedure yields a standard
Schrödinger equation for expression (8). The calculational scheme can be repeated for other
COPs similarly by considering corresponding M(G) and Jn,m which are listed in table 1.
The construction of ESP will entail finding a potential along with the energy eigenvalues
and normalizable eigenfunctions. The procedure is worked out in detail for the case of
hypergeometric polynomials.

3. Normalizability of the eigenfunctions of the ESPs

The eigenfunction, in general form, is given by expression (1) where the pre-factor F(G(r))

given by equation (6) can be written in terms of S(G),W(G) (see the appendix) as

F(G) = NG′− 1
2 r− D−1

2 (W(G)S(G))
1
2 . (12)

This makes the energy eigenfunction become

ψ(r) = NG′− 1
2 r− D−1

2 (W(G)S(G))
1
2 Qm

n (G). (13)

Normalizability of ψ(r) requires∫ G−1(b)

G−1(a)

G′−1r−(D−1)W(G)S(G)
[
Qm′

n (G)
]2

rD−1 dr = finite = θ(say) (14)
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where [a, b] is the domain of Qm
n (r).

θ =
∫ G−1(b)

G−1(a)

G′−1W(G)S(G)
[
Qm′

n (G)
]2

dr

and

θ =
∫ b

a

S(G)W(G)

G′2
[
Qm′

n (G)
]2

dG (15)

where m′ is a parameter to be determined subsequently for convergence of the integral given
by equation (15).

The weight function W(G) and auxiliary function S(G) are characteristics of the particular
polynomial considered. Their product is related to M(G) through the relation

M(G) = d

dG
ln S(G)W(G) (16)

where the expressions for M(G) and W(G) of the various COPs are listed in table 1, from
which S(G) can be determined. The functional form of G′2(r) and the characteristic functions
S(G) and W(G) contain similar factors of G raised to the powers m1,m2,m3, say, i.e.,

S(G,m1)W(G,m2)

[G′(G,m3)]2
= W(G,m). (17)

The powers m1,m2,m3 are so chosen that we can recover the weight function W(G,m), with
a definite m (m = m(m1,m2,m3)) value required for normalization. Equations (15) and (17)
then guarantee the finiteness of θ , given by equation (14), once we adjust m′ to m as given by
equation (44) of the appendix.

4. Construction of ESP when COP is the hypergeometric function

Identifying

Qm
n (G(r)) = 2F1(a, b, c,G) (18)

as the hypergeometric function and using the expressions of M(G) and Jn,m from table 1 we
have

M(G) = c − (a + b + 1)G

G(1 − G)
(19)

and

Jn,m = ab

G(1 − G)
. (20)

Equations (9), (18)–(20) yield

ψ ′′(r)
ψ(r)

+
D − 1

r

ψ ′(r)
ψ(r)

= c2G′2

4G2(1 − G)2
+

(a + b + 1)(a + b − 1)G′2

4(1 − G)2

+
3G′′2

4G′2 − c(a + b)G′2

2G(1 − G)2
− cG′2

2G2(1 − G)
− G′′′

2G′ +
abG′2

G(1 − G)

=
(

c(c − a − b − 1)

2
+ ab

)
G′2

G
+

c(c − 2)

4

G′2

G2

+
( c

2
(c − a − b − 1) + ab

) G′2

(1 − G)
− 1

2

{
G′′′

G′ − 3G′′2

2G′2

}

+

(
(a + b − c)2 − 1

4

)
G′2

(1 − G)2
− (D − 1)(D − 3)

4r2
. (21)
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The quantity inside the curly brackets is usually called the Schwartzian derivative and has the
symbol {G, r}. In order to convert equation (21) into a standard stationary state Schrödinger
equation, so that the rhs of equation (21) becomes (En −V (r)), we make one or more terms of
the rhs of equation (21) a constant quantity. This, in general, enables us to get the expressions
for energy eigenvalues En, the functional form of G(r) and subsequently solvable potential
V (r). Equation (21) has six terms containing G(r) and its derivatives with respect to r. In
order to specify G(r) and to get the energy eigenvalues we have to club together N terms and
put it equal to a constant. This can be done, in principle,

∑5
N=1

6CN ways, i.e., 62 different
ways, discarding the free-particle case. It is to be noted that when N � 2, the analytical
computations required to obtain G(r) become increasingly involved.

(i) As a first choice (N = 1) let us consider,

G′2

G
= p2

1 (22)

where p2
1 is a real positive constant independent of r. Equation (22) gives the functional form

as

G(r) = p2
1

4
r2. (23)

Equations (21)–(23) yield

ψ ′′(r) +
D − 1

r
ψ ′(r) + (Ea − V (r)) ψ(r) = 0 (24)

where

Ea = −p2
1

(
a(b + 1) +

c(c − a − b − 1)

2

)
(25)

V (r) =
(

a(b + 1) +
c(c − a − b − 1)

2
+

(a + b − c)2 − 1(
4 − p2

1r
2
)

)
p4

1r
2(

4 − p2
1r

2
)

+

(
c(c − 2) +

3

4
− (D − 1)(D − 3)

4

)
1

r2
(26)

and

ψ(r) = rc− D
2

(
1 − p2

1r
2

4

) a+b−c+1
2

2F1

(
a, b + 1, c; p2

1r
2

4

)
. (27)

The inverse scale factor p1, for simplicity, is taken as 2 (Ångstrom)−1. We take a = −n to
make the hypergeometric function a polynomial in r2, n being a positive integer. Further, to
get the correct centrifugal barrier term in D-dimensional Euclidean space, we have to identify
the coefficient of r−2 in equation (26) as l(l + D − 2) which fixes c = l + D

2 .
This yields the energy eigenvalues, potential and energy eigenfunction as

En =
(

4n(b + n) − 2

(
l +

D

2

) (
l +

D

2
− b

))
(28)

V (r) = r2

(1 − r2)

(
−4n(b + n) + 2

(
l +

D

2

) (
l +

D

2
− b

))

+
r2

(1 − r2)2

((
b − l − D

2
− 1

)2

− 1

)
+

l(l + D − 2)

r2
(29)
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and

ψ(r) = rl(1 − r2)
b−l− D

2
2 2F1

(
−n, b + n, l +

D

2
; r2

)
, b − l − D

2
� 0 (30)

respectively.
This QS, however, remains Sturmian, as the potential is found to be non-conformable to

system specific conversion techniques that sometimes allow the conversion of Sturmian QS to
normal/physical QS.

(ii) Continuing the procedure to construct exactly solvable QS we consider the second
term of equation (21) to be a constant independent of r, i.e.,

G′2

G2
= p2

2. (31)

This gives the functional form of G(r) as

G(r) = A2 exp(−p2r) (32)

A2 being an integration constant which has to be unity in order to get the correct domain
[0, 1] of the hypergeometric polynomial. Equations (21) and (32) yield

ψ ′′(r) +
D − 1

r
ψ ′(r) + (Ea − V (r))ψ(r) = 0 (33)

where

Ea = −p2
2(c − 2)2

4
(34)

V (r) =
[
(c − 1)(c − a − b − 2)

2
+ ab

]
p2

2 exp(−p2r)

1 − exp(−p2r)

+
(a + b − c + 1)2 − 1

4

p2
2 exp(−2p2r)

(1 − exp(−p2r))2
− (D − 1)(D − 3)

4r2
(35)

and

ψ(r) = r− D−1
2 (exp(−p2r(c − 2)/2))(1 − exp(−p2r))

a+b−c+2
2 2F1(a, b, c − 1, exp(−p2r)).

(36)

To make 2F1(a, b, c − 1, exp(−p2r)) a COP we take a = −n, where n is a positive integer.
Further, the Sturmian potential (35) yields to conversion technique to become normal when

a + b − c + 1 = ±1. (37)

From condition (37) we get the following potentials:
when

a + b − c = 0 (38)

V s
1 (r) = −(n + 1)(n − 1 + c)

p2
2 exp(−p2r)

1 − exp(−p2r)
− (D − 1)(D − 3)

4r2
. (39)

This Sturmian potential can be converted into a normal one, if we attribute to the as yet
arbitrary parameter c, an n-dependence such that

(n + 1)(n − 1 + c) = β2
1

leading to c = β2
1 +1−n2

n+1 , where β2
1 is a characteristic constant of the QS independent of n. This

leads to the exactly solvable normal potential,

V1(r) = −β2
1p2

2 exp(−p2r)

1 − exp(−p2r)
− (D − 1)(D − 3)

4r2
(40)
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Table 2. −[E − V (r)] when Qm
n (G) is 2F1 (−n, β, γ,G).

SN G(r) G′2
G

G′2
G2

G′2
(1−G)2

G′′2
G′2

G′′′
G′

G′2
1−G

1N
p2

1r2

4 p2
1

4
r2

4p2
1

(1−p2
1r2)2 r−2 0

p4
1r2

4−p2
1r2

2 exp(−p2r) p2
2 exp(−p2r) p2

2
p2

2 exp(−2p2r)

(1−exp(−p2r))2 p2
2 p2

2
p2

2 exp(−2p2r)

1−exp(−p2r)

3 (1 − exp(−p3r))
p2

3 exp(−2p3r)

1−exp(−p3r)

p2
3 exp(−2p3r)

(1−exp(−p3r))2 p2
3 p2

3 p2
3 p2

3 exp(−p3r)

4 exp(−p4r) p2
4 exp(−p4r) p2

4
p2

4 exp(−2p4r)

(1−exp(−p4r))2 p2
4 p2

4
p2

4 exp(−2p4r)

1−exp(−p4r)

5N sinh p5r p2
5 cosh p5r coth p5r p2

5 coth2 p5r
p2

5 cosh2 p5r

(1−sinh p5r)2 p2
5 tanh2 p5r p2

5
p2

5 cosh p5r

1−sinh p5r

6N p6r − p2
6r2

4
p6(1− p6 r

2 )2

r(1− p2
6 r

4 )

(1−p6r)2

(1− p6r

4 )2

p2
6

(1− p6r

2 )2

p2
6

4(1− p6r

2 )2 0 p2
6

Term(s) chosen as constant(s), pi in the rhs of equation (21) whose sum in the jth row gives the energy eigenvalue
(−En)j and sum of the r-dependent quantities, except for G(r), gives ESP [V (r)]j of the jth EQS when multiplied
by appropriate constants in equation (21). Subscript N in SN indicates new ESP.

along with the energy eigenvalues:

En = −p2
2

(
β2

1 − (n + 1)2

2(n + 1)

)2

(41)

β2
1 > (n + 1)2 and the energy eigenfunction:

ψ(r) = r− D−1
2 (exp(−p2r))

β2
1 −(n+1)2

2(n+1)

× (1 − exp(−p2r))2F1

(
−n,

β2
1 + n + 1

n + 1
,
β2

1 − n2 − n

n + 1
; exp(−p2r)

)
. (42)

When a + b − c = −2, we get a potential similar to (40) except that the c parameter has a
definite n-dependence3.

Other possibilities for fixing c have been explored and it has been found that no other
normal ESPs can be obtained from V (r) (equation (35)). Table 2 summarizes the consequences
of choosing different terms in the rhs of equation (21) to represent the energy eigenvalue when
the COP used is 2F1(−n, β, γ ;G). In a similar way, by identifying Qm

n (G) as another COP,
mentioned in table 1 and applying the above mentioned procedure different ESPs can be
obtained. To avoid repetitions we present the summaries of the consequences of choosing the
different terms as constants when the COPs are associated Laguerre and associated Legendre
in tables 3 and 4. Figure 1 contains graphs of some new ESPs along with their corresponding
energy eigenfunctions in arbitrary units profiling their behaviour in r . These graphs are
illustrative and not exhaustive.

5. Discussion

In this paper, we have presented a method of construction/generation of ESPs of the
Schrödinger equation based on the properties of COPs. In fact this method is a refinement of
the method presented in paper I, as it is more flexible than the former method, in the sense
that within the context of a particular COP, this method admits the generation of more ESPs.

3 As there are no constraint equations connecting the constants in equations (40)–(42), they could have been written
in a much simpler form by making the constants unity. But we desist from making the expressions simpler looking
as there is a hidden flexibility in this complexity which will be apparent at the time of application.
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(a) (b)

(c) (d)

(e) (f )

Figure 1. The ESPs V (x) and energy eigenfunctions ψ(x) for Sturmian EQSs ((a) and (b)) and ((c)
and (d)), derived from 2F1(−n, β, γ ;G) (SN 1, table 2) and P m

n (G) (SN 4, table 4), respectively.
The normal ESPs V (x) with ground-state energy eigenfunction ψ1(x) and excited-state energy
eigenfunctions ψ2(x), ψ3(x) ((e) and ( f )) derived from P m

n (G) (SN 2, table 4) and Lα
n(G) (SN 1,

table 3), respectively. All graphs are drawn in arbitrary units.

The method is applied to generate spherically symmetric ESPs in an arbitrary D-dimensional
Euclidean space. ESPs so generated are generally Sturmian. However, as shown, some of the
Sturmian ESPs yield to system specific conversion techniques and become normal/physical
ESPs. The number of possible ESPs that can be generated for a COP depends on the number of
terms in B(G,G′,G′′,G′′′) and the mode of extraction of the energy eigenvalues as illustrated
in the text for hypergeometric polynomials. Construction of ESPs for other COPs, namely
associated Laguerre and associated Legendre, is also similar to the case as elaborated for
a hypergeometric polynomial. Their construction procedure is summarized in tables 3 and
4. In tables 3 and 4, except for G(r), the other quantities in the first row are terms of
�(r) containing G(r) and its higher order derivatives when COP is associated Laguerre and
associated Legendre, respectively. As per our procedure one of the terms of �(r) is put equal
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Table 3. −[E − V (r)] when Qm
n (G) is associated Laguerre (Lα

n(G)).

SN G(r) G′2
G2 G′2 G′2

G
G′′2
G′2

G′′′
G′

1N exp(−p1r) p2
1 p2

1 exp(−2p1r) p2
1 exp(−p1r) p2

1 p2
1

2 p2r
1
r2 p2

2
p2
r

0 0

3
p2

3
4 r2 4

r2
p4

3
4 r2 p2

3
1
r2 0

4 exp(−p4r) p2
4 p2

4 exp(−2p4r) p2
4 exp(−p4r) p2

4 p2
4

5N sinh p5r p2
5 coth2 p5r p2

5 cosh2 p5r p2
5 cosh p5r coth p5r p2

5 tanh2 p5r p2
5

Term(s) taken as constant(s), pi whose sum in the jth row gives the energy eigenvalue (−En)j and sum of the
r-dependent quantities, except for G(r), gives ESP [V (r)]j of the jth EQS when multiplied by appropriate constants
in the corresponding equation for Lα

n(G) similar to equation (21). Subscript N in SN indicates new ESP.

Table 4. −[E − V (r)] when Qm
n (G) is associated Legendre (P m

n (G)).

SN G(r) G′2
1−G2

G′2
(1−G2)2

G2G′2
(1−G2)2

G′′2
G′2

1 sin p1r p2
1 p2

1 sec2 p1r p2
1 tan2 p1r p2

1 tan2 p2r

2 tanh p2r p2
2sech2p2r p2

2 p2
2 tanh2 p2r p2

2 tanh2 p2r

3N (1 − exp(−2p3r))
1
2

p2
3 exp(−2p3r)

1−exp(−2p3r)

p2
3

1−exp(−2p3r)
p2

3
p2

3 (2−exp(−2p3r))2

(1−exp(−2p3r))2

4N exp(−p4r)
p2

4 exp(−2p4r)

1−exp(−2p4r)

p2
4 exp(−2p4r)

(1−exp(−2p4r))2
p2

4 exp(−4p4r)

(1−exp(−2p4r))2 p2
4

Term(s) taken as constant(s) pi whose sum in the jth row gives the energy eigenvalue (−En)j and sum of the
r-dependent quantities, except for G(r), gives ESP [V (r)]j of the jth EQS when multiplied by appropriate constants
in the corresponding equation for P m

n (G) similar to equation (21). Subscript N in SN indicates new ESP.

to a constant which eventually becomes the energy eigenvalue. This step yields the analytical
form of G(r) making other terms of �(r) specified, allowing us to write �(r) = V (r) − En.
In table 3, �(r) contains five terms and hence there are five simple ways to choose the
constant term. However, it is also possible to choose two or more terms as constant. This
opens the possibilities of having

∑4
m=1

5Cm(=30) different choices of choosing En. Similar
explanations hold for table 4. In this method normalizability of the eigenfunction for an ESP
plays an important role in shaping the final form of the generated ESP. As explained in the text
by fixing the index m of a chosen Qm

n (G) from normalizability consideration of the energy
eigenfunction, it is possible to get a number of normal ESPs. The ESPs generated are mostly
non-power law with an inverse square potential (D −1)(D −3)r−2 which vanishes for D = 1
or 3. It may be mentioned that this term along with the Schwartzian derivative gives the correct
form of the D-dimensional ‘centrifugal barrier’ term for a power-law potential. Further, it may
be noted that we have kept the various constants such as integration constants, scale factors,
‘characteristic constants’ explicitly in our expressions instead of putting them equal to unity
to make them simpler. This apparent complexity, however, allows flexibility to the generated
ESPs at the time of possible applications.

Appendix

We present here briefly the relevant information regarding the COPs.
If Qm

n (r) represents an nth degree polynomial in the variable r defined through the
generalized Rodrigues formula (Dennery and Krzywicki 1969)

Qn(r) = 1

W

dn

drn
(W(r)(S(r))n) (43)
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with the help of the weight W(r) and an auxiliary function S(r); then {Qn(r)}(n =
0, 1, 2, 3 . . .) would form an orthogonal set with weight W(r) on the interval [a, b] provided
Qn(r),W(r) and S(r) satisfy

(i) Qn(r) is a first degree polynomial in r;
(ii) S(r) is a polynomial in r of degree �2, with real roots of the equation, S(r) = 0;

(iii) W(r) is positive, real and integrable in the domain [a, b] and the combination W(r)S(r)

satisfies the boundary condition

W(a)S(a) = 0 = W(b)S(b).

Further, Qn(r) will be called a COP and would satisfy the differential equation:

(S(r)W(r)Q′
n(r))

′ = −λnW(r)Qn(r)

where a prime represents differentiation with respect to its argument and the constant λn is
given by

λn = −n
[
K1Q

′
1(r) + 1

2 (n − 1)S ′′(r)
]

K1 being a constant utilized for the standardization of the polynomials4. The corresponding
associated orthogonal polynomials defined over the same domain [a, b] are obtained
(Jafarizadeh and Fakhri 1996) through the relation (except for Hermite and Legendre)

Qm
n (r) = (−1)mS(r)

m
2

dm

drm
Qn(r)

where m is at most n and satisfies the following second-order differential equation:(
W(r)S(r)Qm′

n (r)
)′ = −ηn,mW(r)Qm′

n (r)

where

ηn,m =
[

1

2
(m2n2 − 2m + n)

S ′′

S
+

m − n

S

(
(SW)′

W

)′
− m2

4

S ′2

S2
− m

2

W ′

W

S ′

S

]
.

Further, Qm
n (r) satisfies the normalization condition:∫ b

a

W(r)
[
Qm

n (r)
]2

dr = N(n,m) = finite. (44)
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